Latent conditional individual-level models for infectious disease modeling.

نویسندگان

  • Lorna E Deeth
  • Rob Deardon
چکیده

Individual-level models (ILMs) have previously been used to model the spatiotemporal spread of infectious diseases. These models can incorporate individual-level covariate information, to account for population heterogeneity. However, incomplete or unreliable data are a common problem in infectious disease modeling, and models that are explicitly dependent on such information may not be robust to these inherent uncertainties. In this investigation, we assess an adaptation to a spatial ILM that incorporates a latent grouping structure based on some trait heterogeneous in the population. The resulting latent conditional ILM is then only dependent upon a discrete latent grouping variable, rather than precise covariate information. The posterior predictive ability of this proposed model is tested through a simulation study, in which the model is fitted to epidemic data simulated from a true model that utilizes explicit covariate information. In addition, the posterior predictive ability of the proposed ILM is also compared to that of an ILM that assumes population homogeneity. The application of these models to data from the 2001 UK foot-and-mouth disease epidemic is also explored. This study demonstrates that the use of a discrete latent grouping variable can be an effective alternative to utilizing covariate information, particularly when such information may be unreliable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

A path-specific approach to SEIR modeling

Despite being developed in the late 1920s, compartmental epidemic modeling is still a rich and fruitful area of research. The original compartmental epidemic models were SIR (Susceptible, Infectious, Removed) models, which assume permanent immunity after recovery. SIR models, along with the more recent SEIR (Susceptible, Exposed, Infectious, Removed) models are still the gold standard in modeli...

متن کامل

Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses.

Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the conditional independence assumption underlying the late...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Multilevel analysis of infectious diseases.

Traditional study designs, such as individual-level studies and ecological studies, are unable to simultaneously examine the effects of individual-level and group-level factors on risk of disease. Multilevel analysis overcomes this limitation by allowing the simultaneous investigation of factors defined at multiple levels. Areas in which multilevel modeling can be applied to sexually transmitte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of biostatistics

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2013